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Young's modulus of porous materials 
Part 1 Theoretical derivation of modulus-porosity correlation 

JAMESC.  WANG* 
State University of New York, Stony Brook, New York 11794, USA 

A relationship between porosity and Young's modulus is obtained theoretically for 
porous materials made by powder metallurgy. The relationship is applicable to the entire 
range of porosity and is capable of treating the transition of pore structure from inter- 
connected to isolated. The exact solution is presented graphically. An approximate 
solution with a wide applicable porosity range is given. 

1. Introduction 
From the literature [ 1, 2] it has long been accepted 
that for porous materials both the strength, S, 
and the Young's modulus, E, can be described 
empirically by 

S = So exp (--ap) (1) 

E = E0 exp (-- bp) (2) 

respectively, where So is the zero-porosity strength, 
Eo is the zero-porosity Young's modulus, p is the 
porosity, and a and b are material constants. These 
two equations are known as the Ryshkewitch- 
Duckworth equation and the Spriggs' equation, 
respectively, and yield straight lines when plotted 
in semilogarithmic form (Fig. 1). They are entirely 
empirical, not based on theory. 

Various theories have been developed for 
materials consisting of a continuous matrix and 
a dispersed second phase of specific shape and 
orientation [3-6]. These theories were subse- 
quently applied to porous materials by consider- 
ing the second phase to be vacuum. Since the 
existing theories are based on isolated dispersoids 
or holes, they do not apply to porous materials 
with interconnected pores, a situation which is 
typical for the early and intermediate stages of 
powder consolidation (such as hot pressing, HIPing 
(hot isostatic pressing) and sintering). The only 
analytical work of fundamental importance was 
carried out on strength by Knudsen [7]. In his 
work he obtained a strength-porosity relation 

analytically and then compared it with the 
Ryshkewitch-Duckworth empirical equation. To 
the author's knowledge, no parallel work on 
Young's modulus has been published. 

In this paper an analysis is carried out on the 
Young's modulus of porous materials fabricated 
by the methods of powder metallurgy. The theor- 
etical results will be compared with the empirical 
Spriggs' equation. 

2. Physical model 
2.1. Knudsen's model 
Prior to choosing an appropriate model, it is 
necessary to mention Knudsen's work [7] on 
strength which will be discussed. Knudsen made 
the following assumptions: (a) the pores are formed 
by packing equal-sized spheres in a special array, 
such as simple cubic stacking, etc.; (b) various 
porosities can be achieved by densifying to differ- 
ent densities; (c)the spheres are attracted to one 
another during densification, causing the contact 
area to increase, yet without disturbing the relative 
orientation of the spheres, so that the pattern of 
the array remains unchanged; (d)each deforming 
sphere maintains its original volume, and the dis- 
placed material redistributes itself evenly over the 
residual spherical surfaces; (e)the strength of an 
individual sphere is stronger than the cohesion of 
the contacting area, the latter being the weakest link 
of the material; (f) the strength of a porous material 
is proportional to the load-bearing contact area. 

*Present address: SCM Corporation Research Laboratory, 11000 Cedar Avenue, Cleveland, Ohio 44106, USA. 

0022--2461/84 $03.00 + .12 �9 1984 Chapman and Hall Ltcl. 801 



S ~  - DUCKWORTH 

(a) ,o 

r 

~ SPRIGGS 

(b) P 

Figure I Empirical equations for strength and Young's 
modulus as functions of porosity. (a)Ryshkewitch- 
Duckworth equation for strength. (b)Spriggs' equation 
for Young's modulus. 

Using a point.by-point calculation of the con- 
tact area as a function of bulk density, Knudsen 
was able to obtain a straight-line semilogarithmic 
relationship, as predicted by Equation 1, between 
strength and porosity for a reasonably wide range 
of porosity. 

2.2. Physical model for Young's modulus 
In the present Young's modulus study, a model 
similar to Knudsen's will be used, the first four 
assumptions given above being adopted. The initial 
density is defined here as the packing density at 
which the spheres just touch. For simplicity, simple 
cubic stacking pattern is chosen. 

As depicted in Fig. 2a, for a simple cubic array, 
the "lattice parameter" is l, each lattice cell con- 
taining one "lattice point". The spatial territory of 
a lattice point is a cube centred at the lattice site, 
a cube side being l. The sequence of events associ- 
ated with a unit cell during densification is given 
in Fig. 2d. Upon densification the neighbouring 
Spheres will coalesce to form flattened areas. Each 
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flattened area sustains an angle about the centre of 
the sphere, half of the angle being defined as 0, 
the angle of coalescence. 

At a given instant, the powder particle occupies 
a volume confined to a sphere of radius R and 
truncated by the unit cell of lattice parameter L 
At the very beginning of densification the sphere 
is inscribed within the unit cell, with 0 = 0. As 
densification proceeds,/decreases with increasing 
R and 0. The sphere deforms to a "spherical 
polyhedron", partly sphere and partly polyhedron, 
where R is the radius of the spherical portion. 

O When 0 reaches 45 the pores become disconnected. 
Upon further densification, the flattened area is 
no longer a full circle, and the residual spherical 
surfaces retreat towards the cell corners. Finally, 
at 100% density, the residual spherical surfaces 
shrink into points which coincide with the cell 
comers, and the corresponding 0 is the angle 
between the directions [100] and [1 1 1], or 
0 = 54.74 ~ 

This model is inherently capable of treating 
the transition of the pore structure from inter- 
connected to disconnected. 

3. Mathematical analysis 
3.1. Basic derivations 
Due to periodicity, the cOnsideration of the 
behaviour of a unit cell is equivalent to the con- 
sideration of the entire porous body. 

At any stage of densification, hence any given 
0, the cell volume is 

11o = I s 

and the volume of the powder is 

fl/2 
V = J - t l 2 A d z  

where A is the cross-sectional area of the powder 
perpendicular to the z-axis. The volume fraction, 
and hence the relative density, is 

V l -~1 f~/2 X - ~ =  ~_l /Adz" (3) 

When the unit cell is subject to a load P in the 
z-direction, as shown in Fig. 2b; the elongation is 

i t /2 P/A . 

and the apparent Young's modulus is 

P/l 2 
E -  

6/l 
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Figure 2 Simple cubic array and 
unit cell. 
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Equations 3 and 4 appear to be functions of  l, but 
upon mathematical manipulation [8], X and E/Eo 
become functions of 0 only; see the Appendix. 
X(O) and E/Eo(O) are complicated functions of 0, 
which require numerical integration to evaluate. 
The results are tabulated in Table I and plotted as 
Curve 1 in Fig. 3. 

If P is applied in a shear mode as shown in 
Fig. 2c and 8 is the corresponding shear displace- 
ment, then the same foregoing derivations are 
equally applicable to the shear modulus, and 
the porosity dependency of shear modulus is 
identical to that of  Young's modulus. Therefore, 
Curve I also represents the shear modulus-density 
relationship 

G E 

Co = eo" (s) 

3.2. Shear contribution and bending 
contribution 

The above derivations and the resulting Curve 1 
are for the ideal case where P is exerted on a 
perfect sJ3nple-cubic array in the z-direction. In 
reality, nonideal cases prevail, as shown in Fig. 4b. 
The particles do not always achieve perfect stack- 
ing and the [1 0 0] direction is not always parallel 
to the load. The result is that the neighbouring 
particles are out of alignment with the load, as 
illustrated in Fig. 4ci As can be seen from Fig. 4b, 
nonideal alignment does not significantly affect 
the density but, as will be seen later, it does affect 
the Young's modulus result. Therefore, correc- 
tions to the ideal case and Curve 1 will be made 
accordingly. 

803 



T A B L E I Numerical values for theoretical curves 

X p E/go e~ffleo S~ff/Eo 
0.5236 0.4764 0 0 0 
0.5246 0A754 0,1943 0~7506 0.02899 
0.5274 0.4726 0;2347 0.09151 0.03568 
0.5354 0.4646 0.2832 0.11334 0~4536 
0.5476 0.4524 0.3273 0.13615 0.05664 
0.5612 0.4388 0.3635 0.15761 0.06833 
0.5780 0.4220 0,4006 0.18235 0.08301 
0.5979 0.4021 0.4390 0.21114 0.10154 
0.6209 0.3791 0.4795 0.24484 0.12502 
0.6471 0.3529 0.5224 0.28443 0.15485 
0~764  0.3236 0.5680 0.33074 0.19257 
0.7088 0.2912 0.6165 0.38473 0.24010 
0.7439 0.2561 0.6676 0A4691 0.29916 
0.7815 0.2185 0.7211 0.51768 0.37166 
0.8208 0.1792 0.7759 0.59640 0.45843 
0.8610 0,1390 0.8304 0.68143 0.55915 
0.9002 0.0998 0.8823 0.76859 0.66956 
0.9362 0.0638 0.9278 0.85135 0.78123 
0.9651 0.0349 0.9622 0.91884 0.87745 
1~0 0 1 1 1 

Let us first consider the lines of force. It is well 
known that the lines of force can pass across grain 
boundaries, but not through holes. At zero 
porosity, both the ideal and the nonideal cases 
reach the same morphology, i.e. solidly packed 
with no pores to disturb the force-line flux. This 
is illustrated in Figs. 5 a and b, where M is the mis- 
alignment. The lines of force are straight and 
symmetrical about the z-axis. Therefore, the 
Young's modulus is equal to Eo for both the ideal 
and the nonideal cases. However, at nonzero 
porosites, Fig. 5c, the lines of force are bent and 
are asymmetrical about the z-axis, which converts 
the applied load into a combination of tension and 
shear. The total elongation, Fig. 4d, is the sum of 
tensile elongation, 5E, and shear displacement, 6a. 
As a result, the effective Young's modulus includes 
a shear modulus component. To include the shear 
contribution in the effective Young's modulus, let 
us write 

o 

CO 

~0.I 
z 

o 

bJ 
> 
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t Figure 3 Young's modulus of 
porous materials. Solid curves 
are the theoretical curves, 
broken curves are the approxi- 
mate solutions and the dotted 

0.5 lines are the Spriggs' corre- 
lation lines. 
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Figure 4 Effects of nonideal 
alignment on the elongation in 
the z-direction. 
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E~ f~ = WEE + WGG (6) 

where WE and WG are the weight fractions. 
Substituting Equation5 in Equation6 and 

normalizing with respect to Eo, 

E~ ff ( + Go ryG) E 
Eo = ~'E Eo E~" (7) 

where [WE + (Go/Eo)fflG] is the correction factor 
for the shear effect. 

It is necessary to determine WE and ff/e as 
functions of porosity. Since we know that pro- 
gressively the E component gains importance and 
the G component loses importance as the porosity 
decreases, therefore a lever-rule weight fraction 
relation is proposed: 

t i  
I 

~- i  § I 
" t  "-I'1 

IDEAL 
ALIGNMENT 

( a )  

NONIDEAL 
ALIGNMENT 

( b )  

LINE FLUX 

(c) Figure 5 The lines of force. 
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WE = Pi-'P 
Pi 

and 
P 

W G = _ 
Pi 

where Pi is the initial packing porosity and p is the 
instantaneous porosity. This lever-role type of 
relation is proposed for the beauty of simplicity 
and because it satisfies the boundary conditions, 
i.e. E~ ff = E0 at p = 0  and E~ ff = 0 at p = Pi. 

By using lever-rule weight fractions, Equation 7 
can now be written as 

E~ ff = [Pi " P  + Go ~'41 E 
eo [ pi 8o (8) 

The ratio of Go to E0, which can be obtained 
experimentally, depends slightly on material, and 
depends on the Poisson's ratio. For example, for 
alumina, Go/Eo has been measured to be in the 
range of 0.38 to 0.40 [9-13]. For the present 
work a value of 0.385 is chosen because this value 
corresponds to a Poisson's ratio of 0.3, which is an 
appropriate value between ductile metals and 
brittle refractories. The initial packing density, 
Pi, is 0.4764 for a simple cubic array. Substituting 
0.4764 for Pi and 0.385 for Go/Eo into Equation 8, 
the resulting E~ff/Eo is tabulated in Table I and 
plotted as Curve 2 in Fig. 3. 

In addition to the shear effect, the non-ideal 
alignment also forces the neck to act as a stiff 
hinge in order to improve alignment. This situation 
is illustrated in Fig. 4e. A correction factor for this 
hinge effect is necessary. Since the hinge becoriaes 
stiffer with increasing neck size, the porosity 
dependency of the hinge effect follows the same 
trend as does shear deformation. Therefore, to a 
first approximation, the correction factor for shear 
is likewise used to correct the hinge effect. After 
correcting the hinge effect on E~ ff, the new effec- 
tive Young's modulus E~ ff becomes 

E~ ff [pi--p +G__~o p]2 E 
E--T = Pi Eo piJ ~o  (0)" (9) 

The results are given in Table I and shown as 
Curve 3 in Fig. 3. 

Like E, the effective E~ ff and E~ ff are functions 
of 0 alone, not functions of l or R. This means 
that the Young's modulus is determined by the 
degree of densification, hence the porosity, but 
not by the size of the powder particles which 
make up the porous body. 
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4. Discussions 
4.1. Approximate solution 
The theoretical curves are the exact solutions. These 
curves lend support to Spriggs' correlation for 
narrow porosity ranges, particularly at high den- 
sities. However, for correlating data over a wider 
range of porosity, the b-value in Equation 2 cannot 
be treated as constant, and the exponent in 
Equation 2 cannot be considered a linear func- 
tion of porosity. This is especially evident at high 
porosities. 

In fact, the theoretical curves akeady deviate 
from linearity at the very beginning of the curves, 
i.e. p = 0 with negative second derivatives. In view 
of the negative second derivative, an approximated 
solution with a quadratic exponent is proposed: 

E = Eoexp[--(bp+cp2)] (10) 

which is quite satisfactory over a wide porosity 
range. For example, the theoretical curves 1, 2 
and 3 can be approximated by Equation 10 with 
(b,c) equal to (0.946, 2.54), (2.15, 4 .01)and  
(3.35, 5.48), respectively, as shown by the broken 
curves in Fig. 3. The accuracy is weU within + 2% 
throughout the porosity range from p = 0  to 
p = 0 . 3 8 .  For comparison, the corresponding 
Spriggs' correlations, covering the same porosity 
range (p = 0 to p = 0.38), are given by the straight 
lines in Fig. 3, with b equal to 1.72, 3.37 and 5.02, 
respectively. It is obvious that the present analysis 
is a much-improved correlation over Spriggs' 
equation. Additional high-order terms can be 
included for the region where the density is very 
close to the packing density: 

E = E o e x p [ - - ( b p + c p  2+dp a+...)].  
(11) 

All the coefficients are non-negative, as dictated 
by the shape o f  the theoretical curves. 

4.2. Effect of neck geometry 
Up to this point the neck resulting from particle- 
particle contact has been assumed to be Type A-A,  
as depicted in Fig. 6. In reality, surface processe s 
(e.g. surface diffusion, surface-tention-induced 
local plastic flow) may take place during densifi- 
cation. Therefore, a more realistic model would be 
model B-B. At any given density the contact area 
of type B-B is greater than that of A-A.  This 
effect is likely to be significant only at the initial 
stage of densification and will decrease progressively 
with increasing density. 



M O D E L  A - A  
S H A R P - G R O O V E D  NECK 

M O D E L  B - B  
ROUND - GROOVED NECK 

Figure 6 Neck groove geometries. 

For the case of model B-B, the enlargement 
of the contact area will only locally reduce the 
elongation, 8, in the vicinity of the neck and will 
not affect the 8's farther away from the contact 
area. The effect is only partially reflected in E. 
Consequently, no significant difference is expected 
in E-values between models A - A  and B-B. 

4.3. Particle size and grain growth 
The foregoing analysis is based on a model for 
which the specimens are comprised of equabsizdd 
powder particles, each particle retaining its initial 
volume during densification. Consequently a test 
can be applied only to specimens of similar particle 
size and with no grain growth. Fortunately, the 
analysis indicates that the Young's modulus is 
governed by the degree of densification, 0, (hence, 
governed by density) and is independent of 
particle size, R. Therefore, the present results can 
be used to correlate data generated from speci- 
mens having different particle size or where grain 
growth occurs during densification, provided that 
within each specimen there is only one particle 
size. Of course, all the specimens must be of the 
same material and have the same stacking pattern. 

4.4. Non-simple cubic systems 
Since simple cubic stacking dictates a packing den- 
sity of 0.524, strictly speaking, similar analyses 
should be conducted on b cc, f c c  and other 

arbitrary arrays, where the initial packing density 
is different from 0.524. However, Equation 10 
(or Equation 11) should be applied to nonsimple 
cubic arrays, as well. Since Equation 2 does not 
hold true for simple cubic systems, there is no 
logical reason to expect that it will hold true for 
other systems. Further, if Equation 2 indeed 
prevails in other systems, curve fitting will result 
in zero or negligibly small values for all the coef- 
ficients except b, which automatically reduces 
Equation 10 or Equation 11 to Equation 2. 

5. Conclusion 
The effect of porosity on Young's modulus has 
been obtained and presented in Fig. 3. The theor- 
etical relation can be approximated by 

E = Eo exp [-- (bp + cp2)]. 
Higher-order terms can be added to the exponent 
for the region where the density is very close to 
the packing density. All of the coefficients (b, c, 
etc.) are nonnegative numbers, as dictated by the 
shape of the theoretical curves. 

The present analysis is inherently capable of 
treating the transition of the pore structure from 
interconnected to isolated. 

Appendix 
By introducing a new variable ~ as defined by 
Fig. A1, one obtains: 

(7r (9  3 4 t  
] 1-2 ~co--~-- - -co--~]  for 0 ~< 45 ~ 

x(o) 
( ( t a n 2 0 -  1)l/z- t 1 f~in-'[(2)"'eosO] 

4cos a 0 [sin a ~b(rr -- 4De + 2 sin 200] dO 

I 1 [11 ~tan(rr/4-O/2)' U r / 2 -  -.---tj __d~ 1-' 
E 4 cos 0 zr " tan (0/2) ~r/~-0 sin ~(rr -- 4a + 2 sin 2a) 

E-7 (0) = | [ ,sin-'[(=) ''= cos el a~ /" -x 
~ l ( t an20- -1)x /2+4cosO l _ _ _ _ _  ~v___ / [ :o sin ~b(rr -- 4a + 2 sin 2a) l 

where a - cos -1 (cos 0/sin ~). 

for 0/> 45 ~ 

for 0 ~< 45 ~ 

for 0 ~> 45 ~ 
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Figure A1 The relation between variables $ and z. 
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